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Abstract—This paper proposes a new fast recursive total least
squares (N-RTLS) algorithm to recursively compute the TLS
solution for adaptive finite impulse response (FIR) filtering. The
N-RTLS algorithm is based on the minimization of the constrained
Rayleigh quotient (c-RQ) in which the last entry of the parameter
vector is constrained to the negative one. As analysis results on the
convergence of the proposed algorithm, we study the properties
of the stationary points of the c-RQ. The high computational
efficiency of the new algorithm depends on the efficient compu-
tation of the fast gain vector (FGV) and the adaptation of the
c-RQ. Since the last entry of the parameter vector in the c-RQ
has been fixed as the negative one, a minimum point of the c-RQ
is searched only along the input data vector, and a more efficient
N-RTLS algorithm is obtained by using the FGV. As compared
with Davila’s RTLS algorithms, the N-RTLS algorithm saves the
6 number of multiplies, divides, and square roots (MADs). The
global convergence of the new algorithm is studied by LaSalle’s
invariance principle. The performances of the relevant algorithms
are compared via simulations, and the long-term numerical sta-
bility of the N-RTLS algorithm is verified.

Index Terms—Adaptive filtering, fast gain vector, finite im-
pulse response, global convergence, Rayleigh quotient, total least
squares.

I. INTRODUCTION

THE RECURSIVE least squares (RLS) algorithm has been
applied extensively in adaptive signal processing areas in-

cluding the adaptive filtering, online system identification, adap-
tive equalization, adaptive spectrum estimation, adaptive noise
canceling, and so on [1]. The RLS algorithm has many desirable
properties, for example, it can track variation of system param-
eters, and if only the system output includes a white Gaussian
noise sequence, it can get unbiased estimates of system parame-
ters. However, if both the system input and output are corrupted
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by white Gaussian noise, then the RLS algorithm can only pro-
vide biased estimates of the system parameters. Such a biased
estimation decreases the performance of adaptive filtering. This
paper considers how to find a total least squares (TLS) solution
of the adaptive filtering problem in this case.

Although mentioned in [2], the TLS problems were not ex-
tensively studied for a long time. Since their basic performances
were studied by Golub and Van Loan in [3], the solution of the
TLS problems has been extensively applied in the domains of
economics, signal processing, and automatic control [4]–[11].
As a matter of fact, however, the study on TLS solutions is still
insufficient, and their application in signal processing is limited,
perhaps due to a lack of efficient algorithms for solving a TLS
problem online and/or offline. In general, the solution of a TLS
problem can be obtained by the singular value decomposition
(SVD) of a matrix [3], [12]. Since the multiplication operations
of SVD for an by matrix are of computational complexity

, the application of the TLS methods is limited in prac-
tice, especially in real-time signal processing.

To adaptively compute the generalized eigenvector associ-
ated with the smallest eigenvalue of an autocorrelation matrix, a
number of algorithms have been proposed in the context of Pis-
arenko spectral estimation [13]. These algorithms fall into two
broad categories.

The first category involves stochastic-type adaptive algo-
rithms. Thompson [14] proposed an adaptive algorithm that
is used to extract a single minor eigen-component and can
be applied to find the TLS solutions of adaptive filtering and
online system identification. Other similar algorithms have also
been reported by several authors in [15]–[17], all leading to
an adaptive implementation of Psiarenko’s harmonic retrieval
estimator [13]. Yang and Kaveh [16] generalized Thompson’s
algorithm for estimating the complete minor components with
the inflation procedure. However, Yang and Kaveh’s algorithm
needs division operation. Oja [18], Xu et al. [19], and Wang
and Karhunen [20] have proposed the similar algorithms that
avoid the division operation but require the assumption that
the smallest eigenvalue is less than unity. Recently, Luo and
Unbehauen [21] presented a minor subspace analysis (MSA)
algorithm to attack the above drawbacks. To solve the TLS
problems in adaptive FIR and IIR filtering, Gao et al. [22]
proposed a constrained anti-Hebbian learning algorithm that
converges conditionally to the TLS solutions [23], [24]. How-
ever, the above stochastic-type adaptive algorithms have no
equilibrium point under the persistent excitation condition and
with the constant learning rate, as shown in [25]. In contrast,
the total least mean squares (TLMS) algorithm developed in
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[26] has an equilibrium point under the persistent excitation
condition [27]. In general, the stochastic-type algorithms have
simple structure and require only multiplication per iter-
ation but have a relatively slow convergence speed compared
with the following second category of algorithms.

A large variety of the second-category algorithms are called
the recursive total least squares (RTLS) algorithms, which usu-
ally have computational complexity per iteration. Other
algorithms (such as the inverse-power method [15], the conju-
gate-gradient method [28], and the least squares-like method
[29]) also require multiplication operations per eigen-
vector update. In particular, for online solution of the TLS prob-
lems in adaptive FIR filtering, Davila [30] proposed a fast RTLS
algorithm that can fast track the eigenvector associated with
the smallest eigenvalue of the augmented correlation matrix.
Since the Kalman gain vector can be fast estimated by utilizing
the shift structure of the input data vector [31], the computa-
tional complexity of Davila’s algorithm is per iteration.
When both the system input and output are corrupted by white
Gaussian noise, the RTLS algorithms yield unbiased estimates,
and thus, their performances are better than the well-known RLS
algorithm [1].

It should be pointed out that computation of the Kalman gain
vector may be potentially unstable [32]. Some efficient solution
approaches [33], [34] were developed to overcome the potential
instability of the Kalman gain vector, which results in the more
complex structure and increases the computational complexity.
By using the fast gain vector (FGV), the numerically stable fast
transversal filter algorithms were established in [33] and [34].

The RTLS algorithm in [30] is based on fast computation of
the stabilized Kalman gain vector. This paper proposes a new
RTLS (N-RTLS) algorithm for adaptive FIR filtering by using
the fast computation of the FGV and the adaptation minimiza-
tion of the constrained Rayleigh quotient (c-RQ).

The paper is organized as follows. Section II describes briefly
the TLS problems in signal processing and introduces the c-RQ
criterion. Section III studies the landscape of the c-RQ criterion.
The N-RTLS algorithm is developed in Section IV, whereas its
global convergence is studied in Section V. In Section VI, we
present computer simulations to show the performances of the
N-RTLS algorithm in comparison with Davila’s RTLS algo-
rithm.

II. TLS PROBLEMS IN SIGNAL PROCESSING

A. Signal Model

Consider an unknown system with finite impulse response
(FIR), and assume that both the input and output are corrupted
by the additive white Gaussian noise (AWGN). We use an adap-
tive FIR filter to estimate the FIR system from noisy observa-
tions of the input and output, as shown in Fig. 1. The FIR vector
of the unknown system is described by

(1)

where may be time-varying. The desired output is given by

(2)

Fig. 1. Identification of unknown system h(k) (k = 0; 1; . . . ; N � 1) by
using adaptive FIR filter.

where is an AWGN with zero mean and variance at
the output and independent of the input signal. Moreover, the
noise-free signal vector is defined as

(3)

while the noisy input vector of the adaptive FIR filter
is given by

(4)

where , and
is an AWGN with zero mean and variance . Notice that the
input noise may originate from the measured error, interference,
quantized noise, and so on. Hence, we adopt the more general
signal model than the adaptive least-squares-based filtering [1].
Moreover, the augmented data vector is defined as

(5)

For convenience of analysis, we define the following sev-
eral matrices. The autocorrelation matrix of the noise-free input
vector is given by

(6)

and the autocorrelation matrix of the noisy input vector is de-
scribed by

(7)

Then, the autocorrelation matrix of the augmented data vector
can be represented as

(8)

where and . It is easy to
show that

(9)

(10)
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It is seen from (9) that if the autocorrelation matrix of the
noise-free input vector can be directly estimated, we can obtain
an unbiased estimate of the finite impulse response . However,
when the input vector contains the additive noise, we cannot
estimate the noise-free autocorrelation matrix .

B. Rayleigh Quotient for Tracking TLS Solution

In order to find the TLS solution for adaptive FIR filtering,
Davila [30] established the following Rayleigh quotient (RQ):

(11)

where is the parameter vector, and
diag is a diagonal

weighting matrix with . It was shown in [30] that
if the parameter vector associated with the minimization of

is , then the unbiased solution for adaptive FIR
filtering is given by

(12)

where denotes the vector constructed by the first
entries of , and is the last element of .

Let

(13)

Substituting (13) into (11), we have the cost function

(14)

Obviously, the unbiased TLS solution can also be obtained by
minimizing . Since the last entry of is constrained to ,
we refer to the above cost function as the c-RQ.

Remark 2.1: If the above cost function is used, then the tenth
and 11th manipulations in [30, Table I] are unnecessary and can
be omitted, which saves the number of multiplies, di-
vides, and square roots (MADs). In fact, since the parameter
vector tracked is reduced to dimension from dimen-
sion, more manipulations will be saved.

III. LANDSCAPE OF CRITERION

In this section, we study the saddle points of the c-RQ.
Put diag .

Then

(15)

where diag diag . Let

the eigenvalue decomposition (EVD) of be given by
, where , and diag

with the eigenvector corresponding to the eigenvalue being
arranged such that .

Differentiating with respect to , we get

(16)

It is easy to show that the stationary points of are given
by

for and (17)

where is the last element of . It is easily known that
.

Theorem 3.1: If and , then
is a global minimum point of . All the other

stationary points are saddle (unstable) points of .
Proof: See Appendix A.

The above theorem shows that one can search for the global
minimum point of by the gradient descent method.

IV. NEW RTLS ALGORITHM

The purpose of this section is to develop a new algorithm
for finding the TLS solution of the adaptive filtering problem.
The new RTLS algorithm is a special gradient search method
with computational complexity . The parameter vector is
updated by

(18)

where can efficiently be determined in multiplica-
tions by

(19)

Notice that can be computed via an iteration formula

(20)

where

(21)

(22)

(23)

The parameter in (20)–(23) is the forgetting factor. Let the
gradient of with respect to be equal to zero. Then

(24a)

or equivalently

(24b)
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TABLE I
FAST ALGORITHM FOR COMPUTING THE GAIN VECTOR

In order to efficiently solve (24), let

(25)

(26)

(27)

By definition, and can efficiently be computed by

(28)

(29)

Table I shows the FGV algorithm [35], [36] for computing the
gain vector .

It can be shown (see Appendix B) that (24) can be rewritten
as

(30)

where

(31)

(32)

(33)

A solution of (30) is given by

(34)

TABLE II
N-RTLS ALGORITHM

Our new RTLS (N-RTLS) algorithm is summarized in
Table II.

Remark 4.1: It is worth noting that the MADs of the N-RTLS
algorithms is , whereas the MADs of Davila’s algo-
rithm [30] are , which shows that the computational
complexity of the N-RTLS algorithm is significantly lower than
that of Davila’s.

V. CONVERGENCE ANALYSIS

We now study the convergence property of the N-RTLS al-
gorithm. Since the sequence is a discrete-time dynamical
system, its convergence can be analyzed by LaSalle’s invariance
principle [37].

Lemma 5.1: The following result is true:

for all (35)

Proof: Since

(36)

Substituting (24) into (36), we have directly (35), which com-
pletes the proof of Lemma 5.1.

We point out that Lemma 5.1 was first given by Davila [30],
but the above proof is much simpler.

Theorem 5.1: If is large enough so that
, then as .

Proof: Clearly, the sequence is a discrete-time dy-
namical system on a Fréchet space (see [37]) and is composed
of a precompact set (also see [37]). Moreover, is a Lya-
punov function of the sequence on , since

for all . As the sequence is obviously
bounded and remains in for all , we can conclude
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from LaSalle’s invariance principle [37] that converges to
a point in the invariance set defined by

for any (37)

Next, we show that

for and (38)

It follows from Lemma 5.1 that

(39)

Substituting into
yields

(40)

where we have used (39) and the condition
. Since there

normally exists , we
have , which usually requires

(41)

This implies that
for any is a stationary point set, i.e., (38) is true.
On the other hand, it has been shown in Theorem 3.1 that

has the unique stable point . Since the saddle
point set is unstable, we deduce that as . This
completes the proof.

VI. SIMULATIONS

We compare our N-RTLS algorithm with other three algo-
rithms. For convenience, we refer to Davila’s RTLS algorithms
[30] as the original RTLS (O-RTLS for short) and use RLS and
IP to represent the recursive least squares algorithm [1] and
the inverse power algorithm [15], respectively. Each estimation
curve is the result averaged over 30 independent runs.

Example 1—Adaptive Identification of Linear System: The
unknown system impulse response is given by

(42)

The noise-free input is a first-order AR process and given
by

(43)

where is a white Gaussian noise sequence of zero mean
and unit variance. Both the white Gaussian input noise and the
white Gaussian output noise have the unit variance, i.e.,
and . Fig. 2 shows the averaged estimation errors for

Fig. 2. Averaged estimation errors of the four methods for a time-invariant
system, where the variances of the input noise and output noise are equal to 1.

Fig. 3. Averaged estimation errors of the four methods for a time-varying
system, where the variances of the input noise and output noise are equal to 1.

the linear time-invariant system, where the estimation error is
as defined in [30].

In order to test the tracking behavior of the four algorithms
in a nonstationary environment, we simulated a time-varying
system whose parameters undergo a step at time and
used the forgetting factor . Moreover, in order to
make a broader comparison of the relevant algorithms under
different input signals, the noise-free input is also changed
into the following first-order AR process

(44)

where is a white Gaussian noise sequence of zero mean and
unit variance. Both the white Gaussian input noise and the white
Gaussian output noise have also the unit variance. The averaged
estimation errors are shown in Fig. 3.

Fig. 4 shows the long-term numerical stability of the three
TLS algorithms from to for the time-invariant
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Fig. 4. Three TLS algorithms have the almost same long-time numerical
stability.

Fig. 5. Estimation results of harmonic frequency f = 0:1, where the linear
predictive length (order) is N = 3. (a) Frequency estimation results. (b)
Estimation errors of frequency.

system, where , and the input signal and noises are
as given in the above.

Example 2—Adaptive Harmonic Retrieval: In this example,
we consider two adaptive harmonic retrieval experiments for
the N-RTLS, O-RTLS, and RLS algorithms based on the linear

Fig. 6. Estimation results of harmonic frequency f = 0:1, where the
linear predictive length (order) N = 4. (a) Frequency estimation results. (b)
Estimation errors of frequency.

prediction approach [5], [11]. The estimation error is defined by

(45)

where is the number of harmonic waves, and and are the
true and estimated frequency of the th harmonic wave. Since
is difficult to be determined in advance, let simply .

Case 1) The observed data consists of a single sinu-
soid in the AWGN with variance 0.25, i.e.,

, and the phase
is a random variable with uniform distribution

in . The N-RTLS, O-RTLS, and RLS algo-
rithms were used to estimate the linear prediction
parameters. Figs. 5 and 6 show the estimation
results of the harmonic frequency with
the linear predictive lengths (orders) and

, respectively.
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Fig. 7. Estimation results for the two sinusoids, where the linear predictive
length (order) isN = 5. (a) Estimation results of harmonic frequency f = 0:2.
(b) Estimation results of harmonic frequency f = 0:35. (c) Estimation errors.

Case 2) The observed data are given by
, where the variance

of the AWGN is equal to 0.25, and and are
the random variables with uniform distribution of

and are independent of each other. The esti-
mation results are shown in Figs. 7 and 8 for
and , respectively.

Fig. 8. Estimation results for the two sinusoids, where the linear predictive
length (order) isN = 6. (a) Estimation results of harmonic frequency f = 0:2.
(b) Estimation results of harmonic frequency f = 0:35. (c) Estimation errors.

The results in this example show that the performances of the
N-RTLS and O-RTLS algorithms are approximately consistent.

VII. CONCLUSION

In this paper, a fast RTLS algorithm has been introduced for
adaptive FIR filtering. The proposed algorithm has been built
on the adaptation of the constrained Rayleigh quotient and the
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efficient computation of the fast gain vector. These represent
its major differences with respect to Davila’s RTLS algorithm.
With the significantly reduced computational complexity, the
proposed fast RTLS algorithm has demonstrated to be able to
achieve the good performances that are closely consistent with
those of Davila’s algorithm.

APPENDIX A
PROOF OF THEOREM 3.1

We can directly deduce that

(A.1)

Therefore, the point is
the unique global minimum point of . Define

and , where is a positive infini-
tesimal, , and is the last entry of

. From (15), we have

(A.2)

which implies that the stationary point is saddle or unstable.
This completes the proof of Theorem 3.1.

APPENDIX B
DERIVATION OF (30)

It is straightforward to show that

(B.1)

(B.2)

(B.3)

(B.4)

Thus, we have

(B.5)

(B.6)

(B.7)

Clearly, (B7) is just (30).
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